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Study on the Sliding Mode Fault Tolerant Predictive Control Based on
Multi Agent Particle Swarm Optimization
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Abstract: For a class of uncertain discrete-time systems with time varying delay, the problem of robust fault-
tolerant control for such systems is studied by combining the design of sliding mode control (SMC) and model
predictive control (MPC). A sliding mode fault tolerant predictive control based on multi agent particle swarm
optimization (PSO) is presented, and the design, analysis and proof of the scheme are given in detail. Firstly,
the sliding mode prediction model of the system is designed by assigning poles of the output error of the system.
The model has time varying characteristics, and it can improve the motion quality of the system while ensuring
the sliding mode is stable. Secondly, a new discrete reference trajectory considering time-delay systems subjected
simultaneously to parameter perturbations and disturbances is proposed, which not only can ensure that the state
of the system has good robustness and fast convergence in the process of approaching sliding mode surface, but
also can inhibit chattering phenomenon. Thirdly, the multi agent PSO improves the receding-horizon optimization,
which can quickly and accurately solve the control laws satisfying the input constraints, and can effectively avoid
falling into local extrema problem of the traditional PSO. Finally, the theoretical proof of robust stability of the
proposed control scheme is given. Experimental results of quad-rotor helicopter semi physical simulation platform
show that the state of uncertain discrete-time systems with time varying delay is stable under the action of the
proposed control scheme in this paper. The advantages of fast response, less overshoot and small control chattering
prove the feasibility and effectiveness of the proposed control scheme.

Keywords: PSO, quad-rotor helicopter, sliding mode fault tolerant predictive control, time varying delay, uncertain
discrete-time systems.

1. INTRODUCTION

With the rapid development of computer technology
and the actual needs of industrial automation and other
fields, the analysis and design of discrete control system
have become an important part of control theory. In en-
gineering practice, there are some errors in the process of
modeling, and the physical structure of the system will be
influenced by the working conditions. At the same time,
there is inevitable external interference. All these uncer-
tainties will have a profound impact on the final control ef-
fect of the discrete control system. In addition, with the in-
creasing complexity of the structure of the actual discrete
control system, the large time delay is introduced in the
process of signal transmission, computation and remote
control. The existence of time delay will make the analy-
sis and design of systems become more complex and dif-
ficult. Especially for aerospace, precision machining and
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other fields with fast response and high accuracy require-
ments, the control accuracy of the system will be greatly
reduced, which may even cause the system instability.
With the variety of tasks of the control system and the
complexity of the structure, faults of sensors, actuators,
and the internal components of the system are inevitable
when the system is running. Therefore, it has become an
urgent problem for engineering application to investigate
and analyze the fault tolerant control algorithm suitable
for uncertain discrete-time systems with time varying de-
lay [1].

SMC has robustness to the uncertainties of parameter
perturbation and external disturbance, so it is widely used
in the control of uncertain discrete systems [2–4]. How-
ever, when there is a time delay in the discrete system,
SMC shows obvious performance degradation. Especially
when the time delay is too large, and the system has a high
demand for fast response, SMC is often difficult to meet
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the requirements of the actual control. Compared with
SMC, MPC can use its own prediction and optimization
ability to estimate the system performance of a period of
time in the future, and then get a real-time control strategy
of online optimization. MPC is more suitable for elimi-
nating the influence of time delay on the performance of
the discrete system [5, 6]. Therefore, for the uncertain
discrete-time systems with time delay, combining with
SMC and MPC not only can make full use of advantages
of good robustness of SMC for dealing with uncertainties,
but also can optimize the performance of the control to
avoid the effect of time delay on the stability of the sys-
tem.

At present, although the sliding mode predictive control
(SMPC) has become a feasible method to solve the prob-
lem of robust control for uncertain discrete-time systems
[7–9], researches and applications are still lack of in-depth
for the problem of the existence of time delay. The control
requirements of robust control of uncertain mismatched
systems can be satisfied under SMPC, but this scheme is
only applied to the single input single output system. A
SMPC control scheme is proposed for robust control of
multi input multi output (MIMO) systems in [10]. How-
ever, this method considers the modeling error only and
can not overcome the adverse effect caused by the external
interference in the actual engineering system. A SMPC
based on Lazy Learning is designed for MIMO systems in
[11], which has strong adaptability and capacity of resist-
ing disturbance. However, the hierarchical search strat-
egy used in this scheme often introduces large time delay,
and then reduces the control performance in practical ap-
plication. A fast and accurate positioning SMPC scheme
that can effectively reduce the position tracking error is
proposed for Micro/Nano-position servo systems in paper
[12]. But the performance of this scheme is mainly de-
pended on the performance of the observer and it is unable
to maintain good control performance when the parame-
ters of the system change. The design of the observer is
optimized in [13] based on [12], and the chattering phe-
nomenon is suppressed by introducing integral term in the
design process of the control law. But it is still unable to
avoid the effect of observer on the control performance.
A SMPC control method without the state observer is de-
signed in [14], but determination process of the model pa-
rameters is complex and the selection of some parameters
relies on experiences. SMPC is used in the attitude control
of hypersonic vehicle in [15], which can ensure that the
system has robustness to the uncertainties. However, this
method has obvious chattering phenomenon in the sim-
ulation experiment, which is not conducive to engineer-
ing application. The chattering phenomenon is weakened
by improving the reference trajectory in [16]. Although
the above literatures are better to solve the uncertainties in
the discrete-time system, the effect of time delay on the
system is not considered. The time delay of the network

control system is well dealt with in [17]. But SMC and
MPC are independently designed, which can not guaran-
tee the mutual influence between the two kinds of control.
A SMPC scheme with time delay compensator is designed
for aero-engine control system in [18], which can compen-
sate the effect of delay time well. But the time delay con-
sidered is fixed and time varying delay is more useful in
practical systems. For a class of uncertain discrete systems
with external disturbances, a new method based on global
sliding mode surface prediction model is proposed in pa-
per [20], in which the design of reference trajectory based
on power reaching law effectively inhibites the chattering
problem of sliding mode and the system under the con-
trol scheme has robustness. However, that control scheme
does not consider faults and the system time delay, so it is
unsatisfactory when it is applied to a practical system.

In this paper, the problem of fault tolerant control for
uncertain discrete systems with time varying delay is stud-
ied and a new scheme of fault tolerant control based on
multi agent PSO is proposed. The multi agent PSO is
designed to ensure the receding-horizon optimization fast
and accurate. A new type of reference trajectory is pro-
posed which can effectively suppress the chattering phe-
nomenon. The reachability of the discrete sliding mode
control law is proved. Finally, the effectiveness of the
proposed control scheme is verified by the quad-rotor he-
licopter semi physical simulation.

The rest of this paper is organized as follows: The ob-
ject model is proposed in Section 2. Controller design,
stability analysis and algorithm implementation steps are
discussed in detail in Section 3. Finally, the simulation re-
sults of the quad-rotor helicopter semi-physical simulation
platform are presented in Section 4 and the conclusion of
this paper is in Section 5.

2. FORMULATION AND PRELIMINARIES

The state-space model of the system with internal per-
turbations, external disturbances and the time varying de-
lay under actuator faults is considered as following equa-
tion:

x(k+1) = (A+∆A)x(k)+(B+∆B)u(k)

+(Ad +∆Ad)x(k− τ(k))
+ v(k)+E f (k),

y(k) =Cx(k),

(1)

where x(k) ∈ Rn is the state of the system, u(k) ∈ Rp is
the input of the system, y(k) ∈ Rq is the output of the sys-
tem, A ∈ Rn×n, B ∈ Rn×p, Ad ∈ Rn×n and E ∈ Rn×m are
constant matrices, ∆A, ∆B and ∆Ad are the internal per-
turbation of the system, τ(k) ∈ Rn is external disturbance
of the system, τ(k) ∈ R+ is the time varying delay of the
system and f (k) ∈ Rm is fault function. System (1) can be
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rewritten as following:{
x(k+1) = Ax(k)+Bu(k)+Adx(k− τ(k))+d(k),

y(k) =Cx(k),
(2)

where

d(k) =∆Ax(k)+∆Bu(k)+∆Adx(k− τ(k))
+ v(k)+E f (k).

(3)

Assumption 1: The rate of change of the fault and un-
certainty of the system is bounded.

|d(k)−d(k−1)| ≤ d0.

Assumption 2: The fault and uncertainty of the system
have an upper and lower bound as follow:

dL ≤ |d(k)≤ dU |.

3. CONTROLLER DESIGN AND STABILITY
ANALYSIS

3.1. Sliding mode fault-tolerant predictive controller
design

3.1.1 Prediction model design
Define system output error as (4).

e(k) = y(k)− yr(k), (4)

where yr(k) is the desired output, y(k) is actual output.
The linear sliding surface s(k) = σe(k) is adopted, and

σ = [σ1,σ2, · · · ,σq] is designed by pole assignment. The
sliding mode prediction model based on the output error
is (5).

s(k+1) = σe(k+1). (5)

The nominal system of system (2) is as follows:

x(k+1) = Ax(k)+Bu(k)+Adx(k− τ(k)). (6)

The predicted output of the prediction model at the mo-
ment (k+P) can be obtained according to the nominal sys-
tem (6).

s(k+ p) =σe(k+P) = σ [y(k+P)− yr(k+ p)]

=σCx(k+P)−σyr(k+P)

=σC[APx(k)+
P

∑
i=1

Ai−1x(k+P− i

− τ(k+P− i))+
M−1

∑
i=1

AP−iBu(k+ i−1)

+
P−M

∑
i=1

AiBu(k+M−1)]−σyr(k+P),

(7)

where P is the prediction horizon, M is the control horizon
and M ≤ P, u(k + j) = u(k +M − 1) ( j = M − 1, ...,P).
The vector form of (7) is as (8).

SPM(k) = Gx(k)+HU(k)+FXd(k)−σYr(k), (8)

where

SPM = [s(k+1),s(k+2), · · · ,s(k+P)]T ;

U(k) = [u(k),u(k+1), · · · ,u(k+M−1)]T ;

G = [(σCA)T ,(σCA2)T , · · · ,(σCAP)T ]T ;

Xd(k) = [x(k− τ(k)),x(k+1− τ(k+1)),

· · · ,x(k+P−1− τ(k+P−1))]T ;

Yr(k) = [yr(k+1),yr(k+2), · · · ,yr(k+P)]T ;

F =



σCAd 0 · · · · · · 0
σCAAd σCAd 0

...
...

. . .
...

...
...

. . .
...

σCAP−1Ad σCAP−2Ad · · · · · · σCAd

 ;

H =



σCB 0 · · ·
σCAB σCB 0

σCAM−1B
... · · ·

... σCAM−2B · · ·
σCAMB σCAM−1B · · ·

...
... · · ·

σCAP−1B σCAP−2B · · ·
· · · 0
· · · 0

· · ·
...

σCAB σCB
σCA2B σCAB+σCB

...
...

σCAP−M+1B ∑P−M
i=0 σCAiB


.

3.1.2 Reference trajectory design
The reference trajectory of this paper is designed as fol-

lows:sre f = (1− s0

s0 + |s(k)|
)sre f (k)−ζ (k)+ζ1,

sre f (k) = s(k),
(9)

where the reference trajectory s(re f )(k) of present mo-
ment is equal to s(k).

ζ (k) = σd(k). (10)

Equality (10) represents the influence of faults, uncer-
tainties and time delay of the system on sliding mode out-
put value. Then take

ζ1 =
ζU +ζL

2
=

σdU +σdL

2
; (11)
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s0 > ζ2 =
ζU −ζL

2
=

σdU −σdL

2
. (12)

s0 is the design constant, which can coordinate the control
signal amplitude with the velocity that s(k) converges to
s(k) = 0. Due to the interference of the uncertainty and the
fault of the system, the interference suppression method is
embedded in this reference trajectory, which uses ζ1 com-
pensates for ζ (k) to offset maximumly its impact on the
system performance. When |s(k)| is very small namely
that s(k) gradually enters the quasi sliding mode, sre f (k)
approaches to lim

k→∞
− ζ (k) + ζ1 → 0 so the sliding mode

chattering can be effectively suppressed.
Although d(k) is bounded according to assumption 2,

which may influence solving sre f (k + 1). So one-step
delay estimation method is used to obtain d̂(k) approxi-
mately as follow.

d̂(k) =d(k−1)

=x(k)−Ax(k−1)−Adx(k−1− τ(k−1))

−Bu(k−1)−Bu(k−1).

The vector form of (9) is as follows:

Sre f (k) = [sre f (k+1),sre f (k+2), · · · ,sre f (k+P)]T , (13)

where

sre f (k+ j) =(1− s0

s0 + |s(k+ j−1|)
)s(k+ j−1)

−ζ (k+ j−1)+ζ1,

j = 1,2, . . . ,P.

(14)

3.1.3 Feedback correction design
The predictive output of switching function of moment

(k−P) is defined as s(k|k−P).

s(k|k−P) =σC[APx(k−P)

+
P

∑
i=1

Ai−1Adx(k− i− τ(k− i))

+
M−1

∑
i=1

A(P− i)Bu(k−P+ i−1)

+
P−M

∑
i=1

AiBu(k−P+M−1)]−σyr(k).

(15)

Then the prediction error of moment k is as follow,
where s(k) is the actual output of switching function at
moment k.

es(k) = s(k)− s(k|k−P). (16)

The P step predictive output of switching function after
adding the correction is as (17).

s̃(k+P) = s(k+P)+hPes(k), (17)

where hP is the correction coefficient,and the vector form
of (17) is as follows:

S̃PM(k) = SPM(k)+HPEs(k), (18)

where

S̃PM(k) = [s̃(k+1), s̃(k+2), · · · , s̃(k+P)]T ;

HP =


h1

h2
. . .

hP

 ;

Es(k) = [s(k)− s(k|k−1),s(k)− s(k|k−2),

· · · ,s(k)− s(k|k−P)]T .

Generally, take h1 = 1, 1> h2 > h3 > · · ·> hp > 0. With
the increase of the number of prediction steps, the effect
of feedback correction is gradually weakened.

3.1.4 Receding-horizon optimization design
The receding-horizon optimization does not search the

global optimal solutions, but the optimal control in the fi-
nite time horizon. The optimization performance index of
moment k is (19).

j(k) =
P

∑
i=1

βi[sre f (k+ i)− s̃(k+1)]2

+
M

∑
l=1

γl [u(k+ l −1)]2,

(19)

where βi, γl are non-negative weights. βi is the proportion
of the sampling error in the performance index and γl is
limit to control variables. The vector form of (19) is as
follow:

J(k) =[Sre f (k)− S̃PM(k)]T Q[Sre f (k)− S̃PM(k)]

+ [U(k)]T R[U(k)],
(20)

where

Q =


β1

β2
. . .

βP

 , R =


γ1

γ2
. . .

γM

 .

The improved multi agent PSO is used to determine
U(k). Let the optimization performance index J(k) be the
fitness function Ψ.

Assume that particle swarm size is L. The position
and the velocity of the ith swarm is respectively ui =
(ui1,ui2, · · · ,uiM) and vi = (vi1,vi2, · · · ,viM). The best po-
sition of the ith swarm is pi = (pi1, pi2, · · · , piM). The
best fitness value of the ith swarm is Ψibest and the cur-
rent fitness value of the ith is Ψi. The neighoring parti-
cles of the ith swarm are all particles whose position are in
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{(ni1,ni2, · · · ,niM)| |ni j −ui j| ≤ δ , j = 1,2, · · · ,M}. δ is
the particle environment range.

The improved iterative formulas are as follows:
vt+1

i = wvt
i + c1r1(pi −ut

i)+ c2r2(g−ut
i),

ut+1
i = ut

i + vt+1
i ,

w = wmin +[(tmax − t)(wmax −wmin)]/tmax,

(21)

where c1, c2 are learning factors and r1,r2 are random
numbers between 0 and 1. g=(g1,g2, · · · ,gp) is the global
optimal position which is the optimal control quantity re-
quired. w is the weight the coefficient and tmax is the max-
imum number of iteration. When w takes a smaller value,
the convergence velocity of particle swarm would be ac-
celerated. When w takes a larger value, local optimum can
be avoided effectively. In this paper, the dynamic weight
is selected, which can balance accuracy and convergence
velocity. Concrete implementation steps are in part 3.3.

3.2. Stability analysis
For practical systems (1), let moment k be current mo-

ment and the prediction output at moment (k+P) is (22).

s(k+P) =σC[APx(k)

+
P

∑
i=1

Ai−1Adx(k+P− i− τ(k+P− i))

+
M−1

∑
i=1

AP−iBu(k+ i−1)

+
P−M

∑
i=1

AiBu(k+M−1)

+
P

∑
i=1

Ai−1d(k+ i−1)−σyr(k+P)

(22)

The vector form of (22) is as follows:

SPM(k) =Gx(k)+HU(k)+FXd(k)

+KD(k)−σYr(k),
(23)

where

K =


σC 0 · · · 0

σCA σC · · · 0
...

...
. . .

...
σCAP−1 σCAP−2 · · · σC

 ;

D(k) = [d(k),d(k+1), · · · ,d(k+P−1)]T .

The necessary condition for the extreme value of J(k)
is ∂J(k)

∂U(k) = 0, so the control law calculated through the par-

ticle swarm optimization must meet ∂J(k)
∂U(k) = 0. Therefore,

U(k) must meet (24).

U(k) =(R+HT QH)−1HT Q[Sre f (k)−Gx(k)

−FXd(k)+σYr(k)+HpEs(k)].
(24)

Equation (25) can be obtained by substituting (24) into
(23).

SPM(k) =Gx(k)+H[(R+HT QH)−1HT Q

× [Sre f (k)−Gx(k)−FXd(k)+σYr(k)

+HpEs(k)]]+FXd(k)+KD(k)−σYr(k).

(25)

The weight coefficient matrix R is the constraint for
U(k), and generally let R = 0 when analyzing robust sta-
bility. Then the following statement can be obtained.

SPM(k) = Sre f (k)+HpEs(k)+KD(k). (26)

In the Receding-horizon optimization process, only the
current control input signal is implemented to the con-
trolled object, so the actual sliding mode switching func-
tion can be written as follows:

s(k+1) = [1,0, · · · ,0]SPM(k)

= sre f (k+1)+h1[s(k)− s(k|k−1)]

+σCd(k)

= sre f (k+1)+σC[d(k)−h1d(k−1)].

(27)

Generally, let h1 = 1, and then (27) can be written as
(28).

s(k+1) = sre f (k+1)+σC[d(k)−d(k−1)]. (28)

Definition 1: In discrete time sliding mode control, a
quasi sliding mode is considered in the vicinity of the slid-
ing surface, such that |s(k) < ε| where s(k) is the sliding
function and ε is a positive constant called the quasi slid-
ing mode band width [19, 21].

A brief illustration is proposed to explain that the refer-
ence trajectory sre f (k+1) must be able to reach and main-
tain the quasi sliding mode in finite time as follows:

1) |sre f (k0)|> s0ζ2
s0−ζ2

= ε .

1.1) When sre f (k0) =
s0ζ2

s0−ζ2
+φ > ε, φ > 0.

∆sre f (k0)

= sre f (k0 +1)− sre f (k0)

=− [s2
0 +φ(s0 −ζ2)][ζ2 +ζ (k)−ζ1]

s2
0 +φ[s0 −ζ2]

=− s2
0[ζ2 +ζ (k)−ζ1]

s2
0 +φ[s0 −ζ2]

− φ(s0 −ζ2)[ζ2 +ζ (k)−ζ1]

s2
0 +φ[s0 −ζ2]

≤−φ(s0 −ζ2)[ζ2 +ζ (k)−ζ1]

s2
0 +φ[s0 −ζ2]

< 0.

(29)

When sre f (k) is positive, sre f (k) is the decreasing function
on k.

Remark 1: When sre f (k0) initial state is not on quasi
sliding mode and sre f (k0) is positive, sre f (k) will gradually
decrease until entering the quasi sliding mode.
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1.2) When sred(k0) =−( s0ζ2
s0−ζ2

+φ)<−ε, φ > 0,

∆sre f (k0)

= sre f (k0 +1)− sre f (k0)

=
[s2

0 +φ(s0 −ζ2)][ζ2 +ζ (k)−ζ1]

s2
0 +φ[s0 −ζ2]

=
s2

0[ζ2 +ζ (k)−ζ1]

s2
0 +φ[s0 −ζ2]

+
φ(s0 −ζ2)[ζ2 +ζ (k)−ζ1]

s2
0 +φ[s0 −ζ2]

≥ φ(s0 −ζ2)[ζ2 +ζ (k)−ζ −1]
s2

0 +φ[s0 −ζ2]
> 0.

(30)

When sre f (k) is negative, sre f (k) is the increasing function
on k.

Remark 2: When sre f (k0) initial state is not on quasi
sliding mode and sre f (k0) is negative,sre f (k) will gradually
increase until entering the quasi sliding mode.

2) |sre f (k0)| ≤ s0ζ2
s0−ζ2

= ε .

|sre f (k0 +1)| ≤ s2
0ζ 2

2 /(s0 −ζ2)
2

(s0ζ2/s0 −ζ2)+ s0
+ζ2

=
ζ 2

2

s0 −ζ2
+ζ2 =

s0ζ2

s0 −ζ2
.

(31)

Remark 3: For any sre f (k),k > k0, |sre f (k)| ≤ s0ζ2
s0−ζ2

=
ε is always true. As long as the quasi sliding mode is
reached, it must be kept in this state.

The following statement can be obtained from Assump-
tion 1.

σC|d(k)−d(k−1)| ≤ σCd0. (32)

Then there must be a certain moment k0, |s(k + 1)| =
|sre f (k+1)+σC[d(k)−d(k−1)]| ≤ ε +σCw0 can be ob-
tained when k > k0. Therefore, the controller designed in
this paper is robust stable.

3.3. Algorithm implementation steps
For the system described by the formula (1), the imple-

mentation steps of the sliding mode fault tolerant predic-
tive control based on particle swarm optimization are as
follows.

Step 1: Initialize the system state. Determine each pa-
rameter of the object system. Set the prediction horizon,
the control horizon and each weight coefficients.

Step 2: Initialize the particle swarm. Set the size, en-
vironment range, maximum number of iteration, range of
weight, learning factor of the particle swarm.

Step 3: Update positions of particles according to the
information of neighboring particles. Assume that n is the
particle of the neighboring particle of ith particle with op-
timal fitness value. If the fitness value of ith particle is

better than that of n, maintain the position of ith particle.
Otherwise, update the position of ith particle according to
equation (33), where ξ ∈ [−1,1] is a random number.

u′i = un +ξ (ui −un). (33)

Step 4: Iterate particles. The position and velocity of
the particles are updated iteratively, and the optimal po-
sition of the population is obtained according to formula
(21).

Step 5: End optimization. The conditions of optimiza-
tion finish: i)Reach the maximum number of iteration;
ii)Within the allowable error range.

Step 6: Implement the current control law and let k+
1 → k return Step 1.

4. EXPERIMENT RESULT

In this section, the Qball-X4 quad-rotor helicopter de-
veloped by Quanser in Canada [22] is used as the re-
search object as Fig. 1. There are six dimensional vari-
ables (X ,Y,Z,ψ,θ ,ϕ) in the system, where X ,Y,Z are po-
sition variables and ψ is the yaw angle, θ is the pitch an-
gle, ϕ is the roll angle. The X axis direction is chosen as
the research object.

The motion of the Qball-X4 along the X axis is caused
by the total thrust and by changing roll/pitch angles. As-
suming that the yaw angle is zero the dynamics of motion
in X axis can be written as

MgẌ = 4F sin(θ̇),

where Mg is the total msaa of the device, X is the position
of X axis direction, F is the generated by each propeller,
and it is modeled using the following first-order system.

F = Kg
ω

s+ω
u,

Fig. 1. The main body of Qball-X4.
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where u is PWM input to the actuator, ω is the actuator
bandwidth and Kg is a positive gain. A state variable, v
will be used to represent the actuator dynamics, which is
defined as follows:

v =
ω

s+ω
u.

The pitch angle is coupled with the X axis position con-
trol model, so the whole control process can be divided
into two stages. First period is pitch angle control process
to control pitch angle to preset values. And then to start
position control period, in which the pitch angle would be
set close to zero when the position reaches the setting po-
sition. In the case of small pitch angle, X axis direction
model by linearization without external disturbance, pa-
rameter perturbation and time varying delay is obtained as
follow:Ẋ

Ẍ
v̇

=

0 1 0
0 0 4Kg

Mg
θ

0 0 −ω

X
Ẋ
v

+

0
0
ω

u. (34)

The each matrix of system (1) can be described as be-
low when the disturbance, perturbation, time varying de-
lay and fault are introduced.

A =

0 1 0
0 0 12
0 0 −10

 , Ad =

0 0 0
0 0 4
0 0 −5

 ,

B =
[
0 0 15

]T
, E =

[
0.1 0.1 0.2

]T
,

C =
[
1 0 0

]
, ∆A = 0.1A, ∆B = 0.1B,

∆Ad = 0.1Ad , x(0) =
[
1 1 1

]T
,

f (k) = 1.5+
[
0.3sin(6k) 0 0.2sin(2k)

]
x(k),

elements of v(k) are Gauss white noise with zero mean
value, σ = [1], The particle swarm learning factor c1 = 2,
c2 = 2, range of weight wmin = 0.2, wmax = 0.9, L = 20,
maximum number of iteration tmax = 50, the particle envi-
ronment range δ = 6. The prediction horizon P indicates
that outputs at present moment to the expected values of
P steps to the future, which should cover the main part
of the dynamic influence of the controlled object. Exper-
imentation and practice show that the response of system
is slow and the stability of the system is enhanced when
P is increased. The situation is just the opposite when P
is decreased. So this paper chooses the prediction horizon
P = 4, which takes account of both the fast and the sta-
bility of the system. The control horizon M represents the
number of changes of control variables to be determined
in the future. The effect of M on the system is opposite to
that of P. The general selection of M is 1∼2 for a system
with not very complex dynamic characteristics, so this pa-
per chooses M = 2. τ(k) is the integer belonging to [1,3],
and simulation time domain k = 1000. Where parameters
of Qball-X4 are Kg = 120 N, ω = 15 rad/s, Mg = 1.4 kg.

Fig. 2. The position trajectories of X-axis.

Fig. 3. The velocity trajectories of X-axis.

Fig. 4. The actuator dynamics trajectories of X-axis.

From Fig. 2 to Fig. 4, it is not difficult to see that the
system with the disturbance, perturbation, time varying
delay and fault can be quickly stabilized by the control
method proposed in this paper. Compared to the sliding
mode predictive control proposed in [20], the trajectories
of quad-rotor helicopter used by the control method pro-
posed in this paper are smoother. The helicopter is still
stable and safe under actuator fault. Figs. 5 and 6 show
that the control law is fast convergent. Compared to the
other two control methods, the chattering amplitude of the
control law designed in this paper is reduced by almost
50%. It is known that the fault tolerant control method
designed in this paper is effective for the system with the
disturbance, perturbation, time varying delay and actuator
fault from the above experimental results.
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Fig. 5. The trajectories of control law (I).

Fig. 6. The trajectories of control law (II).

5. CONCLUSION

Combined with the advantages of robustness of SMC
and on-line real time optimization of MPC a sliding mode
fault tolerant predictive control based on multi agent PSO
is presented for uncertain discrete-time systems with time
varying delay under actuator faults. Simulation results
show that the proposed control scheme has fast conver-
gence and robustness. Chattering phenomenon is inhibi-
tion effectively and dynamic quality of the system is good.
Further studies will focus on eliminating upper bound of
uncertainties and time delay.
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